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Abstract

This study examines a gain/loss asymmetric utility in continuous time in which
the investor discounts their utility gain by more than the utility loss. By employing
the theory of stochastic differential utility, the model allows a time-variable sub-
jective discount rate. In addition, the model can express various forms of utility
functions including a version of the Epstein–Zin utility. Under the model, the opti-
mal consumption/wealth ratio and portfolio weight have different functional forms
depending on whether the state variables stay in some region.
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1 Introduction

The gain/loss asymmetric preference typically implies that the decision maker values some out-

come from an investment over others based on some value as a reference point. This preference

includes loss aversion and prospect theory (Kahneman and Tversky (1979)), disappointment

aversion (Gul (1991)), and a preference for spread (Wakai (2008)). These preference specifica-

tions have been applied to various phenomena in finance, providing rich explanations and pre-

dictions. These phenomena include the equity premium puzzle (Benartzi and Thaler (1995)),

pricing in initial public offerings (Loughran and Ritter (2002) and Ljungqvist and Wilhelm

(2005)), and portfolio choice (Dahlquist et al. (2017)). One of the difficulties associated with

gain/loss asymmetric preferences is their mathematical complexity. Compared with a standard

expected utility model, the gain/loss asymmetric utility has some type of non-smoothness. This

characteristic creates difficulties in mathematical analyses, although this type of model captures

notable features of the decision maker’s behavior that the standard model cannot.

This paper proposes a continuous-time model of a gain/loss asymmetric utility to provide

a tractable form of gain/loss asymmetric preferences. Specifically, I extend the discrete-time

gain/loss asymmetric preference suggested by Wakai (2008, 2010) to the stochastic differential

utility (SDU) model of Duffie and Epstein (1992b). Wakai (2008) specifies a functional form of

the utility function that represents a preference for spread. A preference for spread implies that

the decision maker prefers a situation in which bad consumption and good consumption are

evenly diversified over time. This is often found in experimental studies such as Loewenstein

(1987). Wakai (2010) extends the utility function of Wakai (2008) to a version under uncertainty.

By taking a natural limit of the discrete-time model by Wakai (2008, 2010) with respect to

a time interval, I define a gain/loss asymmetric SDU and interpret it as an SDU. This allows me

to employ the many mathematical tools available for SDUs and backward stochastic differential

equations (BSDEs) such as those of Duffie and Epstein (1992b), El Karoui et al. (1997), and

Kraft et al. (2013). Using these mathematical tools, I combine the gain/loss asymmetry and the

Epstein–Zin recursive utility of Epstein and Zin (1989) and study the classical Markovian opti-

mal consumption–investment problem of Merton (1969, 1971) under the gain/loss asymmetric

SDU. In the optimal consumption–investment problem, I derive a partial differential equation
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(PDE) that is satisfied by a value function. This PDE is called the Hamilton–Jacobi–Bellman

(HJB) equation, which provides mathematical tractability for various applications.

The HJB equation indicates that optimal consumption and investment under the gain/loss

asymmetry are different from that under the standard SDUs. Particularly, when the risk pre-

mium of a risky asset is time-varying and uncertain, and when the elasticity of intertemporal

substitution (EIS) is high, the gain/loss asymmetric SDU causes non-smooth optimal policies.

The sensitivity of the optimal portfolio weight to changes in the risk premium varies depend-

ing on the value of the risk premium, whereas it is close to constant in the standard models.

Specifically, the sensitivity is high when market conditions are bad, and the sensitivity is low

when market conditions are good. The optimal consumption/wealth ratio dips in regions where

market conditions are bad, whereas it is smooth in the standard models. Hence, the opti-

mal consumption can decrease rapidly when it can be expected that market conditions will be

bad. Interestingly, this result occurs without any jump in a path of underlying state variables.

Therefore, the gain/loss asymmetric SDU can endogenize sudden shocks in the consumption

path.

The features of the optimal policies in gain/loss asymmetric SDUs can be distinguished

from the intertemporal substitution effect. In the high EIS case, the investor easily substi-

tutes current and future consumption, so there is a strong substitution effect. However, under

gain/loss asymmetric SDUs, the investor has a strong motivation to evenly diversify good and

bad consumption over time, i.e., a preference for spread. For example, when market conditions

are bad, the optimal consumption policy in the gain/loss-asymmetric SDU is lower since the

market conditions will be bad for a while and since the investor wants to diversify current

and future consumption. This effect has the same direction as the income effect, but it works

non-smoothly as above.

As mentioned above, the dip in the optimal consumption/wealth ratio implies that the con-

sumption can suddenly change even if an underlying production or endowment process changes

only gradually. This property is consistent with recent literature on rare disaster models.1 In

1Rietz (1988) originally proposes a model with rare disasters to address the equity premium puzzle of
Mehra and Prescott (1985). After decades, Barro (2006) demonstrates that an asset pricing model with
rare disasters can explain the equity premium, by using international data. Recently, Gabaix (2012),
Wachter (2013), Farhi and Gabaix (2016), and others show that rare disaster models can replicate various
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the rare disaster model, the investor is exposed to sudden shocks in their consumption path.

As a result, the consumption path can be discontinuous, and security prices and optimal invest-

ment policies take account of these shocks. This framework fits the data and provides plausible

explanations about behavior of asset prices. Usually, sudden shocks in rare disaster models are

assumed as exogenous jumps in the consumption path, so we can consider that they actually

happen in a production process and/or an endowment process which are often out of the asset

pricing model. On the other hand, the gain/loss asymmetric SDU allows non-smooth changes

in the optimal consumption path without the assumption of exogenous jumps in a production

process. Therefore, the gain/loss asymmetric SDU provides a theoretical explanation about a

part of the shocks that are usually seen as being exogenous in the literature on rare disaster

models, but it can be associated with investor’s choices in reality, such as the global financial

crisis in the late 2000s.

The gain/loss-asymmetric SDU does not always discount utilities at a constant rate, as

well as present-bias models.2 The discrete-time quasi-hyperbolic discounting model also known

as the beta-delta model such as Phelps and Pollak (1968) and Laibson (1997) is one of the

most famous implementations of present-bias models. The investor in the quasi-hyperbolic

discounting model places more value on a current action than a future action, and his or her

short-run discount rate is higher than his or her long-run discount rate. Therefore, it seems

that the quasi-hyperbolic discounting model does not discount utilities at a constant rate.

A continuous-time version of the quasi-hyperbolic discounting model is proposed by Harris

and Laibson (2013). The authors call this quasi-hyperbolic discounting model an instantaneous

gratification model. In this model, the optimal consumption does not satisfy the envelope theo-

rem straightforwardly as well as the gain/loss asymmetric SDU. A main difference between the

gain/loss asymmetric SDU and the instantaneous gratification model is how to rationalize the

optimal policies. The optimal consumption in the gain/loss asymmetric SDU is determined by

a standard procedure: it is a solution to the consumption maximization problem in the HJB

equation. On the other hand, the optimal consumption in the instantaneous gratification model

is rationalized by a concept of equilibrium in the game theory since the model regards a current

behaviors of asset prices that are often found in the markets.
2Ericson and Laibson (2019) is a comprehensive survey of present-bias models.
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decision maker and future ones as different persons. In this sense, the instantaneous gratifica-

tion model is dynamically inconsistent, whereas the gain/loss asymmetric SDU is dynamically

consistent.

The features of the gain/loss asymmetric SDU as above are not obvious in the discrete-time

gain/loss asymmetric utility model because of its mathematical complexity. Furthermore, the

gain/loss asymmetric SDU can be easily applied to existing asset pricing models such as rare

disaster models, models with trading constraints, and models under model-uncertainty because

it is based on the framework of the SDU. Thus, the mathematical tractability of the continuous-

time model helps us to better understand investor behavior under gain/loss asymmetry.

The SDU is introduced by Duffie and Epstein (1992b) and can be used to represent various

preferences in continuous time, including the recursive utility of Epstein and Zin (1989). The

asset-tpricing implication of using the SDU is provided by Duffie and Epstein (1992a). The

representation by the SDU can be used to reinterpret classical problems such as Merton (1969,

1971), Black and Scholes (1973), and Cox et al. (1985). Moreover, the SDU has been applied to

various situations and concepts in finance, for example, optimal consumption-investment deci-

sions and asset pricing under model uncertainty (e.g., Chen and Epstein (2002) and Maenhout

(2004)), the rare disaster model (e.g., Wachter (2013)), and the cross-section of equity returns

(e.g., Ai and Kiku (2013)).

Mathematically, the SDU is equivalent to a solution to a BSDE. This equivalence allows me

to employ mathematical techniques of BSDEs3 to study the SDU. The mathematical properties

of the SDU with the Epstein–Zin preference and, in particular, its verification conditions, have

been investigated by many economists and mathematicians (e.g., Kraft et al. (2013), Xing

(2017), and Kraft et al. (2017)). One difficulty of the Epstein–Zin SDU in terms of mathematics

is its non-linearity. In this study, I use the verification techniques of the HJB equation by Kraft

et al. (2013).

The remainder of this paper is organized as follows. Section 2 reviews the theory of the

recursive gain/loss asymmetric utility by Wakai (2008, 2010) and defines the gain/loss asym-

metric SDU. Section 3 discusses the properties of the gain/loss asymmetric SDU in terms of its

3El Karoui et al. (1997) provide many useful mathematical tools for BSDEs in the finance literature.
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functional behavior and representation. Section 4 considers an optimal consumption-investment

problem, such as Merton (1969, 1971), in general settings under the gain/loss asymmetric SDU

and gives the HJB equation satisfied by the value function and the optimal policies. Section 5

focuses on two specific optimal consumption-investment problems: a stochastic risk premium

case and an independent and identical distribution case. This section also examines the be-

havior of the value function and the optimal policies in these settings. Section 6 concludes the

paper. The Appendixes give proofs of propositions and other notable features of the gain/loss

asymmetric SDU omitted in the main text.

2 Gain/Loss Asymmetric Stochastic Differential Util-

ity: From Discrete Time to Continuous Time

In this section, I first review the theory of the recursive gain/loss asymmetric utility in discrete

time of Wakai (2008, 2010). Next, I extend the discrete-time utility to a continuous-time

utility. Wakai (2008, 2011) suggests a recursive gain/loss asymmetric utility in discrete time

without uncertainty to represent a typical person’s preference for a spread of utilities over time.

Specifically, the author shows that this preference can be expressed as some utility function, Ut,

which satisfies the following recursive equation:

Ut({cτ}τ≥t) = min
δ∈[δt+1,δt+1]

{
(1− δ)u(ct) + δUt+1({cτ}τ≥t+1)

}
, t ≤ T − 1,

and UT (cT ) = u(cT ),

(2.1)

where {cτ}τ≥t is a consumption sequence from time t, and u is an instantaneous utility function.

Two sequences, {δτ}τ≥1 and {δτ}τ≥1, represent the lower and upper boundaries, respectively,

of the subjective discount factor δ, so 0 < δt ≤ δt < 1 for all t. The difference between the usual

discrete-time utility and Ut is the subjective discount factor: in typical cases, the discount factor

does not depend on a current and overall utility, but it does so in (2.1). Taking a minimum

with respect to the discount factor on the right-hand side of (2.1) is related to a preference for

spread.

A preference for spread implies that the decision maker prefers a mixture of several consump-
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tion sequences to each sequence on its own. There are two consumption sequences, c := {cτ}τ≥t

and c′ := {c′τ}τ≥t, and the decision maker is indifferent between c and c′. Now, for any given

a ∈ (0, 1), let us consider a mixture of c and c′ by a denoted as ac+(1−a)c′ = {acτ+(1−a)c′τ}τ≥t.

Then, a preference for spread implies that ac+ (1− a)c′ is at least as good as c and c′ for the

decision maker. If c and c′ are extreme, for example, cτ = 0 and c′τ = 1 when τ ≤ t∗, and cτ = 1

and c′τ = 0 when τ > t∗, for some given time t∗, then, a mixture of c and c′ by a = 1/2 is mod-

erate; acτ + (1− a)c′τ = 1/2, for all τ , and the decision maker who has a preference for spread

considers that the moderate option, ac + (1 − a)c′, is at least as good as the extreme options,

c and c′. Wakai (2008) shows that the utility Ut characterized by (2.1) has decision-theoretic

axiomatic foundations for a preference for spread as shown above.

Table 1: Survey on choices between consumption sequences in Loewenstein (1987)

Two Weekends
Option This Weekend Next Weekend from Now Choices

Q1
A Fancy French Eat at home Eat at home 16%
B Eat at home Fancy French Eat at home 84%

Q2
C Fancy French Eat at home Fancy lobster 57%
D Eat at home Fancy French Fancy lobster 43%

A preference for spread has been found in people’s actual behavior. The survey experiment

by Loewenstein (1987) is a typical example and is summarized in Table 1. In this survey

experiment, a questioner twice asked respondents which consumption plan they preferred. In

Q1, respondents tended to prefer (H,F,H) to (F,H,H) where F stands for “Fancy French” and

H stands for “Eat at home.” On the other hand, in Q2, respondents tended to prefer (F,H,L)

to (H,F,L) where L stands for “Fancy lobster.” If a typical respondent prefers F and L to H,

the answers to Q1 imply that he or she prefers a choice where good consumption (F ) and bad

consumption (H) are evenly diversified over time, (i.e., option B) to another option A where

good consumption comes first, after which the respondent must accept bad consumption. Q2

implies the same types of preferences. Thus, the respondent has a preference for spread. Here,

let us assume a typical respondent has a standard discounted time-additive utility. According

to the answers to Q1, u(F ) + δ2u(H) < u(H) + δ2u(F ) holds, whereas the answers for Q2 imply

u(H) + δ2u(F ) < u(F ) + δ2u(H). Therefore, a typical preference of the respondents cannot be
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expressed as any standard discounted time-additive utility. In contrast, the utility characterized

by (2.1) can support a preference of typical respondents who prefer B to A and C to D.

The recursive equation (2.1) can be expressed as

Ut({cτ}τ≥t) = u(ct) + δt+1 max
{
Ut+1({cτ}τ≥t+1)− u(ct), 0

}
+ δt+1 min

{
Ut+1({cτ}τ≥t+1)− u(ct), 0

}
. (2.2)

Recall that δt+1 ≤ δt+1. Equation (2.2) indicates that the utility gain, max
{
Ut+1({cτ}τ≥t+1)−

u(ct), 0
}

is discounted more than the utility loss, min
{
Ut+1({cτ}τ≥t+1) − u(ct), 0

}
. The dif-

ference in the discounted factors is a key feature of the gain/loss asymmetry in the model.

The discount factor changes depending on whether the future utility, Ut+1, exceeds the current

utility, u(ct). When the future utility is larger than the current utility, the decision maker

expects better consumption in the future than the current consumption. Thus, the decision

maker enjoys the utility gain, but it is greatly discounted. The person may prefer a smoother

consumption path over time because it may be less discounted, which implies a preference for

spread. Based on the difference between the future utility and current utility, the decision maker

judges whether a current state is a utility gain or loss. Therefore, we consider the current utility

as a type of reference point in the sense of Kahneman and Tversky (1979).

Wakai (2010) extends the above recursive gain/loss asymmetric utility to a version under

uncertainty. Under uncertainty, the recursive gain/loss asymmetric utility satisfies the following

stochastic recursive equation:

Ut({cτ}τ≥t) = Et

[
φ

(
essinf

δ∈[δt+1,δt+1]

{
(1− δ)u(ct) + δφ−1(Ut+1({cτ}τ≥t+1))

})]
, (2.3)

where φ is a continuous and strictly increasing function from R to R, φ−1 is the functional

inverse of φ, and Et is a conditional expectation operator given information up to time t.4 The

4Operators, essinf and esssup, indicate essential infimum and supremum, respectively. The concept of
essential infimum (resp. supremum) is one of sophistication of the minimum (resp. maximum) operation
in stochastic environments. The formal definitions of essential infimum and supremum are given by
standard textbooks of continuous-time asset pricing such as Duffie (2001). Essential infimum allows us
to take a minimum of a family of random variables with ignoring their values on negligible sets. In
addition, the essential infimum which this paper mainly focuses on exists and it is measureble with
respect to a suitable sigma-algebra because a set of mesurable random variables in which all elements
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recursive equation (2.3) resembles the recursive characterization of the utility by Epstein and

Zin (1989). Let us apply the gain/loss asymmetry by Wakai (2008) to the Epstein–Zin utility

heuristically. Then,5

Ut({cτ}τ≥t) = essinf
δ∈[δt+1,δt+1]

φ
(

(1− δ)u(ct) + δφ−1
(

Et[Ut+1({cτ}τ≥t+1)]
))

. (2.4)

Therefore, (2.4) takes the expected value of a variable in a different way to equation (2.3): in

(2.4), the decision maker takes only the expected value of Ut+1, whereas in (2.3), the decision

maker takes the expected value given by the entire right–hand side. This difference may be

crucial in discrete time; however, surprisingly, the utility under (2.3) has the same continuous

analog as the utility under (2.4). This equivalence is discussed in Appendix B.

Now, let us consider a continuous analog of the recursive gain/loss asymmetric utility char-

acterized by (2.3). The original definition of the SDU by Duffie and Epstein (1992b) assumes

that a discrete-time utility takes the following form:

Ut = W (ct,m(Ut+∆t),∆t), (2.5)

where W is an aggregating function and m is a certainty-equivalent measure of utility. In

particular, Duffie and Epstein (1992b) consider the expected-utility-based specification that

m(V ) = h−1(Et[h(V )]) for some suitable function h as a certainty-equivalent measure of utility.

Duffie and Epstein (1992b) suggest that a drift of an SDU is a derivative of m with respect to

∆t at ∆t = 0 minus a second derivative of M(Vt, Vt) with respect to the first argument, where

M is a Gateaux derivative of m at the first argument in the direction of the second argument.

As shown in (2.3), the discrete-time recursive gain/loss asymmetric utility does not satisfy the

functional form (2.5). Thus, the original definition of the SDU cannot be applied to the recursive

gain/loss asymmetric utility in a straightforward manner. Therefore, I give a natural definition

of the recursive gain/loss asymmetric utility in continuous time, stating that it has the expected

take values on a deterministic closed interval is upward directed. In this paper, I use the essential
infimum operation in stochastic environments. However, I also use a usual minimum operation, min, in
deterministic equations for simplicity.

5The heuristic equation (2.4) is based on an ordinally equivalent form of the original Epstein–Zin
utility of Epstein and Zin (1989).
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instantaneous growth rate of the discrete-time utility as its drift. The heuristic equation (2.4)

satisfies (2.5) with m(V ) = Et[V ], and Appendix B shows that the continuous analog of (2.3) is

the same as that of (2.4). Therefore, my definition of the recursive gain/loss asymmetric utility

in continuous time can be reinterpreted as the original SDU.

The expected instantaneous growth rate of the recursive gain/loss asymmetric utility is

dEt[Ut+s]

ds

∣∣∣
s=0

= lim
∆t↓0

Et[Ut+∆t]− Ut
∆t

.

For notational simplicity, I omit the consumption sequence as an argument of the utility. More-

over, I assume that φ is continuously differentiable and that the boundaries of the discount rate

are constant over time. To evaluate the expected instantaneous growth rate, I transform the

stochastic recursive equation (2.3) to a time-interval-dependent form, as follows:

Ut = Et

[
φ

(
essinf
δ∈[δ,δ]

{
(1− e−δ∆t)u(ct) + e−δ∆tφ−1(Ut+∆t)

})]
,

where δ and δ are the upper and lower boundary of the subjective discount rate, respectively.6

By the mean value theorem, the differential quotient of ∆t → Et[Ut+∆t] at 0 can be expressed

as

Et[Ut+∆t]− Ut
∆t

= −Et

[
φ′(Rt+∆t) essinf

δ∈[δ,δ]

{
1− e−δ∆t

∆t
(u(Ct)− φ−1(Ut+∆t))

}]
,

where φ′ is the first derivative of φ, Rt+∆t is a random variable taking values between φ−1(Ut+∆t)

and essinf
δ∈[δ,δ]

{
(1− e−δ∆t)u(ct) + e−δ∆tφ−1(Ut+∆t)

}
. Further, suppose that lim

∆t↓0
Ut+∆t = Ut, and

that we can exchange the order of the mathematical operations, lim, essinf and Et.
7 Then,

lim
∆t↓0

Et[Ut+∆t]− Ut
∆t

= −Et

[
lim
∆t↓0

φ′(Rt+∆t) essinf
δ∈[δ,δ]

{
1− e−δ∆t

∆t
(u(ct)− φ−1(Ut+∆t))

}]

= −Et

[
lim
∆t↓0

φ′(Rt+∆t) essinf
δ∈[δ,δ]

{
lim
∆t↓0

1− e−δ∆t

∆t
(u(ct)− φ−1(Ut+∆t))

}]

= − essinf
δ∈[δ,δ]

{
δφ′(φ−1(Ut))

(
u(ct)− φ−1(Ut)

)}
,

6Hereafter, I employ a subjective discount rate for discounting utilities over time because it can
simplify the notations in continuous-time models.

7For example, these assumptions hold when Ut+∆ = Ut + xt+∆t where an outcome of xt+∆t is a
√

∆t
with a constant probability p or b

√
∆t with a probability 1− p for constants a and b.
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where I use the fact that φ′ is positive owing to the increasing monotonicity of φ in the last

equality. Therefore,

dEt[Ut+s]

ds

∣∣∣
s=0

= − essinf
δ∈[δ,δ]

{
δφ′(φ−1(Ut))

(
u(ct)− φ−1(Ut)

)}
. (2.6)

From (2.6), define a function F as follows:

F (c, v;u, φ, δ, δ) := essinf
δ∈[δ,δ]

{
δφ′(φ−1(v))

(
u(c)− φ−1(v)

)}
. (2.7)

Then, dEt[Us]/ds|s=t = −F (ct, Ut;u, φ, δ, δ). From the definition, −F (ct, Ut;u, φ, δ, δ) can be re-

garded as the expected instantaneous growth rate of Ut. Therefore, we can express a continuous

analog of the recursive gain/loss asymmetric utility as an SDU as follows:

dUt = −F (ct, Ut;u, φ, δ, δ)dt+ dMt,

where (Mt)t≥0 is some martingale process that represents uncertainty. The functions u and φ

and the constants δ and δ completely determine F and Ut. In studies on SDUs, the function F

is usually called a generator of an SDU. The following is a definition of the gain/loss asymmetric

SDU used in this paper.

Definition 1 (The Gain/Loss Asymmetric Stochastic Differential Utility (G/L-A SDU))

For an instantaneous utility function u, a continuously differentiable and monotone increasing

function φ, and boundary constants of a subjective discount rate δ and δ with 0 < δ ≤ δ, a

gain/loss asymmetric stochastic differential utility (G/L-A SDU) with quadruplets

(u, φ, δ, δ) is an SDU with a generator F (c, v;u, φ, δ, δ) defined in (2.7).

3 Characterization of Gain/Loss Asymmetric Stochas-

tic Differential Utility

In this section, I formally characterize the G/L-A SDU using the techniques of BSDEs. Let

(Ω,F ,P) be a complete probability space endowed with a K-dimensional Brownian motion
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B := (B1
t , . . . , B

K
t )t≥0. I denote by FB := (FB

t )t≥0 an augmentation of the filtration generated

by B. Heuristically, FB can be regarded as a flow of information.

Let us consider a utility maximization problem during a finite interval [0, T ] in which T is a

finitely non-negative real number. Let C be a subset of R, and C = (Ct)t∈[0,T ] be a consumption

process taking values in C. Additionally, C is FB-progressively measurable, so we know a value

of Ct using the information at time t (i.e., FB
t ).

For any given instantaneous utility u, a continuously differentiable and monotone increasing

function φ, and boundary constraints δ and δ with 0 < δ ≤ δ, we assume that a decision maker

has a G/L-A SDU with (u, φ, δ, δ). Therefore, the decision maker’s utility process denoted by

(Ut)t∈[0,T ] is a solution to the following BSDE:

 −dUt = F (Ct, Ut;u, φ, δ, δ)dt− Z>t dBt,

UT = u(CT ),
(3.1)

where (Zt)t∈[0,T ] is a K-dimensional FB-progressively measurable process, and a superscript >

indicates the transpose of a vector or matrix. u is a function from C to R which represents the

bequest utility.

To explore the properties of the G/L-A SDU, I first assume that φ is an identity function

(i.e., φ(v) = v) and then consider a case of a more complicated φ. If φ(v) = v, then BSDE (3.1)

can be expressed as


−dUt = essinf

δ∈[δ,δ]
{δ(u(Ct)− Ut)}dt− Z>t dBt,

UT = u(CT ).

(3.2)

It can be easily seen that

essinf
δ∈[δ,δ]

{δ(u(Ct)− Ut)} =


δ(u(Ct)− Ut), if Ut > u(Ct),

0, if Ut = u(Ct),

δ(u(Ct)− Ut), if Ut < u(Ct).

(3.3)

Therefore, the future utility, Ut, is more discounted if it is larger than the current utility, u(Ct).

Conversely, the future utility is less discounted if it is smaller than the current utility. This
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property implies that the utility index has a recursive gain/loss asymmetry.

The generator (3.3) can be rewritten as follows:

essinf
δ∈[δ,δ]

{δ(u(Ct)− Ut)} = −
(
δ esssup{Ut − u(Ct), 0}+ δ essinf{Ut − u(Ct), 0}

)
.

The above representation is consistent with the discrete-time recursive equation given by (2.2),

so the G/L-A SDU is a continuous analog of the recursive gain/loss asymmetric utility in discrete

time. Let us call a G/L-A SDU with (u, φ(v) = v, δ, δ) a standard G/L-A SDU with (u, δ, δ).

Under some regularity conditions, a standard G/L-A SDU can be expressed in an explicit

form. To observe this, let us define feasible sets for consumption and discount rate processes.

We restrict a space of consumption processes as follows: every consumption process is left

continuous on [0, T ) and progressively measurable with respect to FB. It satisfies the following

inequalities:

E

[∫ T

0
(u(Ct))

2dt

]
<∞, and E

[
(u(CT ))2

]
<∞. (3.4)

From the inequalities in (3.4) and the Lipschitz property of the drift term, BSDE (3.2) has

a unique solution. I denote by C[0, T ] a set of consumption processes that satisfy the above

conditions. Additionally, let us define a set of discount rate processes as follows:

∆[0, T ; δ, δ] :=

δ = (δt)t∈[0,T ]

∣∣∣
δ is left continuous

and progressively measurable with respect to FB,

and δt ∈ [δ, δ] for all t ∈ [0, T ].

 .

Based on these conditions, we have the following proposition.

Proposition 2 (Explicit Representation of Standard G/L-A SDUs) For any consump-

tion process C ∈ C[0, T ], a standard G/L-A SDU with (u, δ, δ) exists and it can be expressed

as

Ut = essinf
δ∈∆[0,T ;δ,δ]

E

[∫ T

t
δse
−

∫ s
t δrdru(Cs)ds+ e−

∫ T
t δrdru(CT )

∣∣∣ FB
t

]
, (3.5)

for all t ∈ [0, T ].

Proof. See Appendix A. 2
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Proposition 2 implies that the investors who have a standard G/L-A SDU choose their

subjective discount rate, δ, as if their discounted expected utilities are minimized. This explicit

representation is similar to a max-min utility which minimizes the discounted expected utility

with respect to a probability measure. Here, I compute a definite integral of the discount

factors in G/L-A SDUs. A discount factor process of a G/L-A SDU on [t, T ] for any t ∈ [0, T ]

is (δse
−

∫ s
t δrdr)s∈[t,T ), and e−

∫ T
t δrdr at time T . Then,

∫ T

t
δse
−

∫ s
t δrdrds+ e−

∫ T
t δrdr = −

∫ T

t
de−

∫ s
t δrdr + e−

∫ T
t δrdr = 1− e−

∫ T
t δrdr + e−

∫ T
t δrdr = 1.

Hence, the definite integral of the subjective discount factor process is always standardized

to one, so the process can be seen as a weighting function for the instantaneous utilities over

time. On the other hand, the probability measure can be seen as a standardized weighting

function for the instantaneous utilities over uncertain states, so the max-min utility smooths

the utilities over states: a small probability tends to be assigned to a good state where the

instantaneous utility takes a larger value, and a high probability tends to be assigned to a bad

state. Therefore, the similarity of the two utility representations suggests that the G/L-A SDU

smooths the instantaneous utilities over time. A small subjective discount factor tends to be

assigned at a time when the current utility is larger than the continuation value so a bad future

is expected, i.e., a utility loss. A large subjective discount factor tends to be assigned at a time

when the current utility is smaller than the continuation value so a good future is expected,

i.e., a utility gain.

As can be seen from the expression (3.5), the G/L-A SDU can be regarded as an extended

version of the variational utility by Geoffard (1996). The author proposes a model under

a deterministic environment which minimizes an infinite horizon, continuous-time discounted

utility with respect to discount factors, that is,

U(C) = min
δ∈∆

∫ ∞
0

f(Ct, Bt, δt)dt, (3.6)

where ∆ is a set of admissible paths of rates of time preference, and f is a current felicity

function of the current consumption Ct, discount factor Bt, and rate of time preference δt.

13



Compared to (3.6), the G/L-A SDU takes account of uncertainty, so it minimizes an expected

discounted utility.

Uncertainty in the G/L-A SDU plays a crucial role in optimal policies. Section 5.2 will show

that a current value of wealth has no influence on an optimal choice of rates of time preference

when we suppose homotheticity of preference, one of typical assumptions in the literature. As

a result, continuous changes in a subjective discount rate do not occur in the I.I.D. case. The

deterministic case is also similar. Therefore, we need an extra state variable as another source

of randomness to implement continuous changes.

In addition, Proposition 2 leads immediately to the following properties.

Corollary 3

1. A standard G/L-A SDU is concave on a consumption process C if u and u are also

concave.

2. A standard G/L-A SDU exhibits a homothetic preference if u and u are homogeneous with

the same degree.

Here, let us consider a case of a more complicated φ. Suppose

φ(v) =
1

1− γ

(
(1− 1/ψ)v

) 1−γ
1−1/ψ

, u(c) =
1

1− 1/ψ
c1−1/ψ, and u(c) =

1

1− γ
c1−γ , (3.7)

where γ > 0, γ 6= 1 and ψ > 0, ψ 6= 1, respectively. It can be easily seen that φ is continuously

differentiable and strictly increasing. Then, the generator can be expressed as

F (c, v;u, φ, δ, δ) = min
δ∈[δ,δ]

δ (1− γ)v

1− 1/ψ

 c1−1/ψ

((1− γ)v)
1−1/ψ
1−γ

− 1

 .

Therefore, this is a gain/loss asymmetric version of the generator of the Epstein–Zin preference

with an EIS ψ and a coefficient of relative risk aversion (RRA) γ. Let us call the G/L-A SDU

with (u, φ, δ, δ) defined in (3.7) an Epstein–Zin G/L-A SDU with (γ, ψ, δ, δ).8 It can be easily

8In the unit EIS case (ψ = 1), φ and u are defined as

φ(v) =
1

1− γ
exp{(1− γ)v}, and u(c) = log c.
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seen that an Epstein–Zin G/L-A SDU with (γ, 1/γ, δ, δ) is a standard G/L-A SDU with (u, δ, δ)

in which u(c) = c1−γ/(1 − γ). This instantaneous utility, u is a constant relative risk aversion

(CRRA) utility. Therefore, let us call this Epstein–Zin G/L-A SDU a CRRA G/L-A SDU with

(γ, δ, δ).

In the Epstein–Zin G/L-A SDU, the discount rate δ depends on the sign of the following

value:

φ−1(Ut)− u(Ct) = u

(
(1− γ)U

1
1−γ
t

)
− u(Ct)⇔ Ut −

1

1− γ
C1−γ
t .

If the above value is positive, the decision maker obtains a utility gain that is more discounted.

On the other hand, if the above value is negative, the decision maker experiences a utility loss

that is less discounted. Furthermore, ψ does not appear directly in the above value. Therefore,

the threshold of the utility gain or loss does not depend directly on ψ although ψ could affect

the current regime through changes in Ut. Table 2 summarizes the three special cases of G/L-A

SDUs, and more detailed properties of G/L-A SDUs are discussed in Appendix C.

Table 2: Three Special Cases of G/L-A SDUs

The G/L-A SDU is defined as dUt = −F (Ct, Ut;u, φ, δ, δ)dt+ dMt,

where F (c, v;u, φ, δ, δ) = min
δ∈[δ,δ]

{
δφ′(φ−1(v))

(
u(c)− φ−1(v)

)}
.

Name u(c) φ(v) u(c)
standard G/L-A SDU

arbitrary function φ(v) = v arbitrary function
with (u, δ, δ)

CRRA G/L-A SDU
u(c) =

c1−γ

1− γ
φ(v) = v u(c) =

c1−γ

1− γwith (γ, δ, δ)

Epstein-Zin G/L-A SDU
u(c) =

c1−1/ψ

1− 1/ψ φ(v) =
((1− 1/ψ)v)

1−γ
1−1/ψ

1− γ
u(c) =

c1−γ

1− γwith (γ, ψ, δ, δ)

Then, the generator can be expressed as

F (c, v) = min
δ∈[δ,δ]

{
δ(1− γ)v

(
logC − 1

1− γ
log
(

(1− γ)v
))}

.
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4 An Optimal Consumption and Investment Prob-

lem

This section studies an optimal consumption and investment problem under gain/loss asymme-

try. A G/L-A SDU with (u, φ, δ, δ) can be expressed as


−dUt = essinf

δ∈[δ,δ]

{
δφ′(φ−1(Ut))

(
u(Ct)− φ−1(Ut)

)}
dt− Z>t dBt,

UT = u(CT ).

Hereafter, I consider a standard Merton problem under a G/L-A SDU in a Markovian envi-

ronment. Following the settings in the previous section, on the complete probability space

(Ω,F ,P), B := (B1
t , . . . , B

K
t )t≥0 is a K-dimensional Brownian motion, and FB := (FB

t )t≥0 is

an augmentation of the filtration generated by B. In the market, there is one risk-free asset, and

there are N risky assets with N ≤ K. Let P 0 = (P 0
t )t∈[0,T ] be a price process of the risk-free

asset. Let P = (P 1
t , . . . , P

N
t )t∈[0,T ] be a price vector process of the risky assets. I denote the

first N -elements of B by BN .

The price processes P 0 and P satisfy the following system of stochastic differential equations

(SDEs). 
dP 0 = r(Yt)P

0
t dt,

dPt = diag(Pt)
(
b(Yt)dt+ σ(Yt)dBN

t

)
,

dYt = bY(Yt)dt+ σY(Yt)dBt,

(4.1)

where r : RM → R, b : RM → RN , σ : RM → RN×N , bY : RM → RM , and σY : RM → RM×K

are measurable functions, and Y is a stochastic process taking values in RM . The process Y

represents state variables. I assume there exists a strong solution to the system of SDEs (4.1).

Let α = (α1
t , . . . , α

N
t )t∈[0,T ] be a portfolio process of the risky assets, and let W = (Wt)t∈[0,T ]

be a wealth process. For a given portfolio process α and consumption process C, the wealth
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process W satisfies the following SDE.9

dWt = Wt

((
1−

N∑
i=1

αit

)
dP 0

t

P 0
t

+
N∑
i=1

αit
dP it
P it

)
− Ctdt

=
(
Wt(r(Yt) + α>t µe(Yt))− Ct

)
dt+Wtα

>
t σ(Yt)dBN

t ,

where µe(Yt) := b(Yt) − r(Yt)1N is an instantaneous excess expected return vector process.

The investor has Wtα
i
t/P

i
t shares of the risky asset i at each time t.

Now, let us define the investor’s consumption and portfolio in more detail. For simplification

of notation, I write X = (W,Y) and X = R+ × RM . For any given portfolio α, consumption

C, and x = (w,y) ∈ X , let us denote by Xt,x;α,C = (W t,(w,y);α,C ,Yt,y) the state variable

X = (W,Y) starting at Wt = w and Yt = y and controlled by α and C. For any t ∈ [0, T ] and

x = (w,y) ∈ X , let A(t,x) be a set of portfolio processes and consumption processes such that

any (α,C) ∈ A(t,x) satisfies CT = W
t,(w,y);α,C
T ,

E

[∫ T

t
(u(Cs))

2ds

]
<∞, and E

[
(u(W

t,(w,y);α,C
T ))2

]
<∞,

and (α,C) has a left-continuous path, P-almost surely, and is progressively measurable with

respect to FB. Let us call A(t,x) a set of admissible controls.

The utility maximization problem for the investor who has a G/L-A SDU, U , with (u, φ, δ, δ)

is

V (t,x) := max
(α,C)∈A(t,x)

Ut, (4.2)

for all (t,x) ∈ [0, T ] × X . To solve the utility maximization problem (4.2), there are two

commonly used methods: the HJB equation approach and the utility gradient approach (e.g.,

Duffie and Skiadas (1994), Schroder and Skiadas (1999), and El Karoui et al. (2001)). The

utility gradient approach requires the differentiability of a generator of an SDU with respect to

a utility index, whereas a generator of a G/L-A SDU is not differentiable. Therefore, I use the

9I assume that none of the risky assets have a dividend, but this assumption can be relaxed easily in
which case the following discussion still holds.
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HJB equation approach. The HJB equation for (4.2) with respect to (t,x = (w,y)) is

− ∂v

∂t
− max

(α,C)

{
Lα,Cv + min

δ∈[δ,δ]

{
δφ′(φ−1(v))

(
u(C)− φ−1(v)

)}}
= 0, (4.3)

where

Lα,Cv =
(
w
(
r(y) + α>µe(y)

)
− C

)
vw +

1

2
w2α>Σ(y)αvww

+ wα>ΣPY(y)vwy + (bY(y))>vy +
1

2
tr {ΣY(y)vyy} ,

Σ(y) = σ(y)(σ(y))>, ΣPY(y) = σ(y)(σNY(y))>, ΣY(y) = σY(y)(σY(y))>,

vw =
∂v

∂w
, vy =

∂v

∂y
, vww =

∂v

∂w∂w
, vyy =

∂v

∂y∂y>
, vwy =

∂v

∂w∂y
,

and σNY(y) is the sub-matrix of the first N columns of σY(y). The terminal condition is

v(T,x = (w,y)) = u(w).

The HJB equation (4.3) contains a minimization problem for δ. This type of HJB equation is

usually called the Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation. HJBI equations may not

have classical solutions, but the HJB equation (4.3) is elliptic, so we can consider a viscosity

solution: a larger class of solutions to PDEs. However, it is mathematically hard work to

rigorously prove the existence of a viscosity solution in a general setting, which would be beyond

the scope of this paper. Furthermore, we can discuss the interesting economic features of G/L-A

SDUs by assuming the HJB equation (4.3) has a classical solution. Therefore, I assume that

the HJB equation (4.3) has a classical solution.

We need to prove a solution to the HJB equation (4.3) is a value function defined in (4.2).

To the best of my knowledge, no one has proved yet whether a solution to the HJB equation in

the Epstein–Zin utility is always the associated value function. However, under some parameter

constraints, we can easily prove that a solution to the HJB equation (4.3) is the value function,

by using the result of Kraft et al. (2013). The details is in Appendix D.

In the HJB equation (4.3), the maximization problem over α and C can be separated as
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follows:

− ∂v

∂t
− max

(α,C)

{
Lα,Cv + min

δ∈[δ,δ]

{
δφ′(φ−1(v))

(
u(C)− φ−1(v)

)}}

= −∂v
∂t
− r(y)wvw − (bY(y))>vy −

1

2
tr {ΣY(y)vyy}

−max
α

{
w(µe(y)vw + ΣPY(y)vwy)>α+

1

2
w2vwwα

>Σ(y)α

}
−max

C

{
min
δ∈[δ,δ]

{
δφ′(φ−1(v))

(
u(C)− φ−1(v)

)}
− Cvw

}
.

The optimization problem over α is the same form as the standard model. However, the

optimization problem over C is clearly different. The solution to the optimization problem over

C is different functional form depending on the value function v.

To compare the optimal consumption of the G/L-A SDU with those of the standard model,

let us look the optimal condition of consumption in the standard model. In the standard model

in which a discount rate is a constant δ, the optimal consumption C∗ satisfies the envelope

condition as follows:

δu′(C∗) =
vw

φ′(φ−1(v))
=

dφ−1(v)

dw
,

where u′ and φ′ are the first derivatives of u and φ, respectively. This envelope condition states

that the marginal value of the optimal consumption, δu′(C∗), is equal to the marginal value of

wealth, dφ−1(v)/dw. However, the optimal consumption in the G/L-A SDU does not always

satisfy the envelope theorem due to the non-differentiability of the generator. Under some

standard assumptions, we can characterize the optimal consumption in the G/L-A SDU by a

new condition.

Proposition 4 Suppose that vw ≥ 0 and u is increasing and concave. Then, the optimal

consumption policy in the G/L-A SDU, denoted by C∗, satisfies

δu′(C∗) =
dφ−1(v)

dw
, if u(C(δ, v))− φ−1(v) > 0,

δu′(C∗) =
dφ−1(v)

dw
, if u(C(δ, v))− φ−1(v) < 0,

u(C∗) = φ−1(v), otherwise,
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where a function (δ, v)→ C(δ, v) is a solution to the following equation for C,

δu′(C) =
dφ−1(v)

dw
.

Proof. See Appendix A. 2

Proposition 4 tells us that there are three situations which the investor who chooses the

optimal consumption can experience. First two are a utility loss and gain as aforementioned.

In these situations, the investor’s marginal utility of consumption is equal to the marginal value

of the wealth, so the envelope condition holds. The last one is a neutral situation that the

investor does not experience both of a utility gain and loss. In this situation, the investor

cannot equate the marginal value of current consumption to the marginal value of wealth due

to the gain/loss asymmetry. To observe this, let us consider a simple example: if the investor

experiences a utility gain, he or she has a motivation to increase his or her consumption because

the marginal value of current consumption is larger than the marginal value of wealth. However,

in the last situation, the investor enters the region of a utility loss before the marginal value

of current consumption becomes equal to the marginal value of wealth. The marginal value of

consumption in the utility loss region is always smaller than the marginal value of wealth, so

the investor chooses his or her consumption at the boundary of the utility loss and gain. As a

result, the envelope condition does not hold, and the investor chooses his or her consumption

as its value measured by utility, u(C), is equal to the adjusted continuation value, φ−1(v). The

property that the envelope condition does not hold in some region is an important difference of

the G/L-A SDU from other standard SDUs.

Hereafter, I focus on the HJB equation of the Epstein-Zin G/L-A SDU with (γ, ψ, δ, δ). In

addition, I suppose ψ 6= 1 and γ 6= 1. Let us assume that a solution to the HJB equation (4.3)

has the following form:

v(t,x = (w,y)) =
w1−γ

1− γ
exp{(1− γ)g(t,y)} (4.4)
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where g(t,y) is some continuously differentiable function. Then,

φ′(φ−1(v))
(
u(C)− φ−1(v)

)
= w1−γ exp{(1− γ)g(t,y)}(β/ exp{g(t,y)})1−1/ψ − 1

1− 1/ψ
,

where β = C/w. Hence,

max
C

{
min
δ∈[δ,δ]

{
δφ′(φ−1(v))

(
u(C)− φ−1(v)

)}
− Cvw

}

= w1−γ exp{(1− γ)g(t,y)}max
β

{
min
δ∈[δ,δ]

{
δ

(β/ exp{g(t,y)})1−1/ψ − 1

1− 1/ψ

}
− β

}
.

Solving the above optimization problem, we have

a(g(t,y)) := max
β

{
min
δ∈[δ,δ]

{
δ

(β/ exp{g(t,y)})1−1/ψ − 1

1− 1/ψ

}
− β

}

=



1

1− 1/ψ

(
δψ

ψ
exp{(1− ψ)g(t,y)} − δ

)
, if g(t,y) < log δ,

− exp{g(t,y)}, if log δ ≤ g(t,y) ≤ log δ,

1

1− 1/ψ

(
δ
ψ

ψ
exp{(1− ψ)g(t,y)} − δ

)
, if g(t,y) > log δ,

and the optimal consumption/wealth ratio (C∗/w) is

β∗(t,y) :=
C∗

w
=


δψ exp{(1− ψ)g(t,y)}, if g(t,y) < log δ,

exp{g(t,y)}, if log δ ≤ g(t,y) ≤ log δ,

δ
ψ

exp{(1− ψ)g(t,y)}, if g(t,y) > log δ.

Obviously, a function g → a(g) is continuously differentiable and monotone decreasing. On the

other hand, when we regard the optimal consumption/wealth ratio, β∗, as a function of g, a

function g → β∗ is not continuously differentiable, though it is continuous. This implies that the

optimal consumption/wealth ratio can change non-smoothly even though the function g, i.e.,

the value function changes smoothly. These non-smooth changes are more clear when ψ > 1,

that is the substitution effect is larger than the income effect. Then, a slope of the optimal

consumption/wealth ratio jumps at the boundaries of the three situations. For example, if g

changes from below log δ to above log δ, the slope of β∗ jumps from positive one to negative
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one. Therefore, the level of β∗ can change non-smoothly on this boundary.10

For the optimization problem with respect to the portfolio, we have

max
α

{
w(µe(y)vw + ΣPY(y)vwy)>α+

1

2
w2vwwα

>Σ(y)α

}
= w1−γ exp{(1− γ)g(t,y)}max

α

{(
µe(y) + (1− γ)ΣPY(y)gy(t,y)

)>
α− γ

2
α>Σ(y)α

}
.

Hence,

Q(gy(t,y),y) := max
α

{(
µe(y) + (1− γ)ΣPY(y)gy(t,y)

)>
α− γ

2
α>Σ(y)α

}
=

1

2γ

(
µe(y) + (1− γ)ΣPY(y)gy(t,y)

)>
Σ−1(y)

(
µe(y) + (1− γ)ΣPY(y)gy(t,y)

)
,

10In the unit EIS case, I guess that the value function also takes the functional form (4.4). Then,

φ′(φ−1(v))
(
u(C)− φ−1(v)

)
= w1−γ exp{(1− γ)g(t,y)}

(
log β − g(t,y)

)
,

where β = C/w. Hence,

max
C

{
min
δ∈[δ,δ]

{
δφ′(φ−1(v))

(
u(C)− φ−1(v)

)}
− Cvw

}

= w1−γ exp{(1− γ)g(t,y)}max
β

{
min
δ∈[δ,δ]

{
δ
(

log β − g(t,y)
)}
− β

}
.

Solving the above optimization problem, we have

a(g(t,y)) := max
β

{
min
δ∈[δ,δ]

{
δ
(

log β − g(t,y)
)}
− β

}

=


δ
(

log δ − g(t,y)
)
− δ, if g(t,y) < log δ,

− exp{g(t,y)}, if log δ ≤ g(t,y) ≤ log δ,

δ
(

log δ − g(t,y)
)
− δ, if g(t,y) > log δ,

and the optimal consumption/wealth ratio (C∗/w) is

β∗(t,y) :=
C∗

w
=


δ, if g(t,y) < log δ,

exp{g(t,y)}, if log δ ≤ g(t,y) ≤ log δ,

δ, if g(t,y) > log δ.

As well as the general case when ψ 6= 1, a function g → a(g) is continuously differentiable and monotone
decreasing. A function g → β∗ is not continuously differentiable but continuous. The rest is the same as
the general case.
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and the optimal portfolio weight is

α∗(t,y) :=
1

γ
Σ−1(y)

(
µe(y) + (1− γ)ΣPY(y)gy(t,y)

)
.

As in the classical results, such as Merton (1969, 1971, 1973), the optimal portfolio weight

is separated into a myopic term, Σ−1µe/γ, and the hedging demand, (1 − γ)Σ−1ΣPYgy/γ.

This shows that the gain/loss asymmetry affects the optimal portfolio choice only through the

hedging demand. In some cases, there is no hedging demand: for example, (1) the absence of

an extra state variable, Y; (2) an uncorrelated extra state variable (i.e., ΣPY = 0); or (3) log

utility (i.e., γ = 1). In these instances, the optimal portfolio weight is the same as the symmetric

case, which is the myopic term. Note that, even if the investor with a G/L-A SDU is faced with

situations (2) and (3), the gain/loss asymmetry still affects the investor’s consumption choice.

Finally, the HJB equation (4.3) can be reduced to the following PDE for g(t,y):

gt(t,y) + a(g(t,y)) +Q(gy(t,y),y) + r(y)

+ b>Y(y)gy(t,y) +
1

2
tr
{

ΣY(y)
(

(1− γ)gy(t,y)g>y (t,y) + gyy(t,y)
)}

= 0, (4.5)

with the terminal condition g(T,y) = 0 for all y ∈ RM .

5 The Effects of Gain/Loss Asymmetry on the Op-

timal Consumption and Investment

This section specifies the asset price dynamics and examines the effects of the gain/loss asym-

metry on the optimal consumption and investment. I will consider two cases: a stochastic risk

premium case and an independent and identical distribution (I.I.D.) case. Throughout this

section, I assume an Epstein–Zin G/L-A SDU with (γ, ψ, δ, δ). Furthermore, I assume there

exists a classical solution to the HJB equation (4.3).
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5.1 Stochastic Risk Premium

I now introduce an extra state variable. Suppose N = M = 1,K = 2 and let us denote by P 0 a

risk-free asset price and by P 1 a risky asset price. The dynamics of P 0 and P 1 are as follows:


dP 0

t = rP 0
t dt,

dP 1
t = P 1

t

(
(r + Yt)dt+ σdBt

)
,

dYt = κ(y − Yt)dt+ σy

(
ρdBt +

√
1− ρ2dB̃t

)
,

(5.1)

where r > 0, σ > 0, κ > 0, y ∈ R, σy > 0 and ρ ∈ [−1, 1] are constants, and B and B̃

are mutually independent one-dimensional standard Brownian motions. r is a constant risk-

free rate, σ is a volatility of return on P 1, and the state variable, Y , is the instantaneous risk

premium on P 1. Moreover, ρ is a correlation coefficient between P 1 and Y . This model is a

complete market model if ρ = 1 or −1, and it is an incomplete market model otherwise.

The asset dynamics equation (5.1) assumes a time-varying stochastic risk premium. The

optimal consumption and investment with a stochastic risk premium under a CRRA agent has

been studied by many scholars such as Kim and Omberg (1996) and Wachter (2002). The

Epstein–Zin preference agent’s problem (without gain/loss asymmetry) has also been studied

by Kraft et al. (2013) and Xing (2017) among others.

The distribution parameter functions can be expressed as

r(y) = r, µe(y) = y, σ(y) = σ, bY(y) = κ(y − y), and σY(y) = σy

(
ρ
√

1− ρ2

)
.

Therefore, the reduced HJB equation (4.5) can be rewritten as

gt(t, y) + a(g(t, y)) + r +
y2

2γσ2
+
(
κy +

(1− γ
γ

ρσy
σ
− κ
)
y
)
gy(t, y)

+
σ2
y

2

(
(1− γ)

(1− γ)ρ2 + γ

γ
g2
y(t, y) + gyy(t, y)

)
= 0. (5.2)

The reduced HJB function (5.2) does not have an explicit solution, so I compute a numerical

solution using the finite difference (FD) method.

Campbell et al. (2004) examine an optimal consumption and investment with a (gain/loss
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symmetric) Epstein–Zin preference under the asset price dynamics in (5.1). The authors com-

pute distribution parameter values based on the work of Campbell and Viceira (1999). I use

the parameter values in Campbell et al. (2004) to compute a numerical solution in my model.

For the preference parameters, let us consider three cases: a CRRA G/L-A SDU (Case 1)

and two Epstein–Zin G/L-A SDUs (Case 2 and 3). In Case 1, the EIS is the reciprocal of

the RRA; that is, ψ = 1/γ = 0.1. In Case 2 and 3, I assume that the investor prefers early

resolution of uncertainty: γ = 10 and ψ = 1.1. The boundaries of the subjective discount rates

are identical in Case 1 and 2: δ = 0.05 and δ = 0.12. The upper boundary of the subjective

discount rate in Case 3 is the same as the other two cases: δ = 0.12, but the lower boundary is

smaller: δ = 0.02. The time to maturity, T , is 100, so I evaluate a long-run value of g. Table 3

shows the parameters.

Table 3: Parameter Values in Stochastic Risk Premium.

Distribution Parameters (by Campbell et al. (2004))
r σ κ y σy ρ

0.0082 0.0790 0.0439 0.0213 0.0057 −0.9626

Preference Parameters

γ ψ δ δ T (Time to maturity)
10.0 Case 1: 0.1 = 1/γ Case 1 and 2: 0.05 0.12 100

Case 2 and 3: 1.1 Case 3: 0.02

In the FD method, I set the step size of the time variable to T/50000 = 0.002 with a

maximum and minimum of y as 0.2 and −0.2, respectively. The mesh size of y is 0.4/1000 =

0.0004, and the boundary values of g for y are linearly extrapolated.

Figure 1 shows the relationships between y and g(0, y) in Case 1 and 2. In Case 1 (i.e., the

CRRA case), the shape of g of the G/L-A SDU on the left figure resembles those of symmetric

SDUs. In contrast, the shape of g of the G/L-A SDU in Case 2 (i.e., the Epstein–Zin case)

differs from those of symmetric SDUs. If g < log δ, the G/L-A SDU’s g is close to the symmetric

g with δ, whereas it is close to the symmetric g with δ if g > log δ.

In Case 1, the value of ψ is 0.1, which means the investor has a small EIS. This implies

that the investor has strong motivation to pursue consumption smoothing, so the intertemporal

consumption choice does not matter. Therefore, the subjective discount rate, which determines
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Figure 1: g
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the relative importance of current and future consumption, is also less important. Accordingly,

the value function is not sensitive to the subjective discount rate, and the gain/loss asymmetry

has a limited effect on the investor’s utility.

In contrast to Case 1, the investor in Case 2 has an Epstein–Zin type utility, which allows

both the RRA and the EIS to be high. A high EIS (ψ = 1.1) indicates that the investor easily

substitutes a decrease (resp. an increase) in his or her current consumption to an increase

(resp. a decrease) in future consumption. Therefore, the intertemporal consumption choice of

the investor in Case 2 is more important than in Case 1. As a result, the value function in

Case 2 is more sensitive to the subjective discount rate than the value function in Case 1, and

the gain/loss asymmetry has a larger impact on the investor’s utility. This implies that the

gain/loss asymmetry is crucial when the EIS is high.

In addition, Figure 1 shows that the utility gain or loss coincides with the market condition.

The utility loss, in which g is less than log δ, occurs when the risk premium, y, stays in a

region around zero. Since there does not exist any short-sell constraint, the expected return on

investment of the risk asset is low when y is close to 0. Accordingly, the investor expects a bad

future, and the future utility is less than the current utility; that is, a utility loss occurs. On

the other hand, the utility gain, in which g is greater than log δ, occurs when the risk premium

stays in a region far from zero. The investor expects to enjoy successful investments in this

region and, thus, increases their investment in risky assets including short selling. Therefore,
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the future utility is larger than the current utility, and a utility gain occurs.

Figure 2: Optimal Policies α∗ and β∗ in Case 1 (CRRA case ψ = 1/γ)
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Figure 2 shows the optimal portfolio weight and consumption/wealth ratio in Case 1. As

argued above, the optimal policies under gain/loss asymmetry resemble those in the symmetric

cases.

Figure 3: Optimal Policies α∗ and β∗ in Case 2 (Epstein-Zin case ψ 6= 1/γ)
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Figure 3 shows the optimal portfolio weight and consumption/wealth ratio in Case 2. In

contrast to Figure 2, the optimal policies under gain/loss asymmetry differ from those in the

symmetric cases. In the gain/loss asymmetric case, the sensitivity of the optimal portfolio weight

to the risk premium, y, changes depending on the value of y, whereas the sensitivity is close to
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a constant everywhere in the symmetric cases. In the utility loss region, in which g < log δ, the

sensitivity is high. In the utility gain region, in which g > log δ, the sensitivity is low. In the

utility loss region, the investor’s subjective discount rate is low, δ, so the future utility is more

valuable than the current utility. As a result, the investor significantly increases their (long or

short) position of risky assets to increase the future utility even if the risk premium increases

or decreases by a small amount. However, in the utility gain region, the relative importance

of the future utility decreases because it is more discounted in the utility gain region than it

is in the loss region. Therefore, the sensitivity of the investor’s position to changes in the risk

premium is lower in the gain region than it is in the loss region.

The right figure in Figure 3 shows that the optimal consumption/wealth ratio under the

gain/loss asymmetry has a dip in the utility loss region. In the standard theory of the symmet-

ric case, the investor with a high EIS easily substitutes their current consumption for future

consumption. When ψ > 1, this substitution effect dominates the income effect. Therefore, the

optimal consumption/wealth ratio is inversely proportional to the market condition. Consider-

ing that the utility loss or gain coincides with the market condition, this dip cannot happen in

the symmetric case.

The dip can be explained by changes in the subjective discount rate. In the utility loss

region, the investor is satisfied with low consumption because the utility is less discounted. On

the other hand, the investor needs large consumption in the utility gain region because of the

large subjective discount rate. This third effect decreases the investor’s strong motivation to

substitute as a reaction to the market condition, and the dip occurs in the consumption/wealth

ratio. Note that the third effect by the gain/loss asymmetry occurs even if ψ < 1, but its

magnitude is small.

The third effect can be interpreted as a preference for spread. The intertemporal substitution

of consumption means that the investor increases current consumption as compensation for a

decrease in future consumption and vice versa. Therefore, the investor with a strong motivation

for an intertemporal substitution of consumption chooses a consumption plan whereby more

(resp. less) is consumed currently and less (resp. more) is consumed in the future. On the

other hand, a preference for spread means that the investor prefers a consumption plan in

which good and bad consumption are evenly diversified over time. As a result, although a bad
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state in the market can be expected, the investor under the G/L-A SDU does not increase

their current consumption but, instead, decreases it in order to diversify the intertemporal

consumption stream over time. In this sense, the G/L-A SDU expresses a preference other

than habit formation. Habit formation implies that the investor smooths current consumption

compared with past consumption (or a consumption level known by current information), but

a preference for spread means that the investor diversifies current and future consumption.

Figure 4: Value Function g and Optimal Policies α∗ and β∗ in Case 3 (Less
Discounting in a Utility Loss δ = 0.02)
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Figure 4 shows graphs of g and optimal policies α∗ and β∗ in Case 3, in which a utility

loss is less discounted (δ = 0.02). The graph of g in Figure 4 indicates that g is always larger

than log δ, in other words, the investor who maximizes his or her utility does not experience a
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utility loss in Case 3. This implies that, in Case 3, the marginal value of current consumption

in a utility loss region is always strictly smaller than the marginal value of wealth. Therefore, a

consumption plan which attains a utility loss is not worth choosing for the investor in Case 3.

Although the investor in Case 3 does not experience a utility loss, his or her optimal policies

and value function are different from those in the symmetric case. The optimal portfolio weight

is obviously non-linear at risk premium, and the optimal consumption/wealth ratio has a dip. In

Case 3, the investor will experience a utility loss when he or she continues increasing his or her

consumption. As aforementioned, a large consumption in a utility loss is costly, so the investor

chooses a consumption in the boundary between the two regions. On the boundary, a preference

for spread affects intertemporal consumption choice more strongly than the substitution effect,

so the portfolio weight becomes non-linear and the dip occurs in the consumption/wealth ratio.

Although the non-smooth change in the optimal policies is a key feature of the G/L-A

SDU, other preferences may also replicate endogenously. One candidate is model uncertainty;

specifically, a max-min expected utility. Chen and Epstein (2002) extend the discrete-time max-

min expected utility to the SDU. Some of these max-min SDUs also have a non-smooth term in

their HJB equations, for example, the κ-ignorance model in Chen and Epstein (2002). However,

non-smoothness appears in the term of the first derivative of the value function.11 Accordingly,

it is difficult to investigate the existence of the dip owing to mathematical complexity although

many studies have found that model uncertainty has other rich implications. In this sense, the

G/L-A SDU exhibits moderate non-smoothness.

The other candidate is a model of multiple equilibria, such as the sunspot model. A multi-

ple equilibria model necessarily involves an equilibrium selection problem; for example, which

equilibrium occurs? On the other hand, the non-smooth change in the G/L-A SDU is caused

by the characterization of its preference. Therefore, the G/L-A SDU can avoid the equilibrium

selection problem.

Finally, the dip occurs in the utility loss region, which means that the investor decreases

11For example, the HJB equation in the κ-ignorance model is

−∂v
∂t
− max

(α,C)

{
Lα,Cv + δφ′(φ−1(v))

(
u(C)− φ−1(v)

)
+ κ|vw|

}
= 0,

where κ is a non-negative constant.
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consumption non-smoothly when the market conditions become bad. Therefore, the G/L-A

SDU has a similar consumption path to that of some consumption-based asset pricing models

assuming non-smooth decreases in consumption such as in the rare disaster models. Although

any sample path of the risk premium, Y , does not have a jump, the optimal consumption path

in the G/L-A SDU has non-smooth changes similar to a jump in consumption because of the

preference, not because of an assumption of the market model. Therefore, the G/L-A SDU

provides a foundation for non-smooth changes in a consumption path from decision theory.

5.2 The I.I.D. Case

Let us consider the case where the risky asset prices follow I.I.D. dynamics. This implies that

the risky asset price vector satisfies the following SDE:

dPt = diag(Pt)
(
bdt+ σdBN

t

)

where b ∈ RN and σ ∈ RN×N are constants. Additionally, I assume that the risk-free rate, r,

is also a constant. Therefore, there is no state variable that affects the asset price dynamics as

well as the investor’s consumption and investment choice. As a result, the value function does

not depend on y.

The reduced HJB equation (4.5) can be expressed as

a(g(t)) +
1

2γ
µ>e Σ−1µe + r = −gt(t), (5.3)

with the terminal condition, g(T ) = 0. µe is the excess expected return vector, µe = b − r1,

and Σ is a dispersion matrix, Σ = σσ>. The optimal portfolio weight vector is constant:

α∗ = Σ−1µe/γ.

The reduced HJB equation (5.3) has an explicit solution which can be represented as a

combination of monotone transformations of three logistic functions. However, I only consider

a steady state of g as T → ∞ without derivation of the solution because the steady state has

sufficient information in order to study behavior of the value function and optimal policies. The

function, g → a(g), is monotone decreasing and continuous, and the left-hand-side of (5.3) does
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not contain the time variable, t, without the argument of g. Therefore, there exists a steady

value of g as T → ∞ if the left-hand-side of (5.3) can take zero.12 To confirm this, let us

consider the limiting behavior of a(g) as g tends to positive infinity or negative infinity. To

compute the limiting behavior, we need to consider two cases depending on the value of ψ, as

follows:

lim
g→∞

a(g) =


− δ

1− 1/ψ
< 0, if ψ > 1,

−∞, if ψ < 1,

lim
g→−∞

a(g) =


∞, if ψ > 1,

− δ

1− 1/ψ
> 0, if ψ < 1.

Hence, if ψ < 1, there exists a steady value of g because the right-hand-side of (5.3) can take a

zero due to the monotonicity. On the other hand, if ψ > 1, the existence of a steady value of g

depends on the values of the parameters; that is, if the inequality

− δ

1− 1/ψ
+

1

2γ
µ>e Σ−1µe + r < 0 (5.4)

holds, then there exists a steady value of g. The following proposition summarizes the result of

the steady value.

Proposition 5 Suppose that ψ < 1 or ψ > 1 and that the inequality (5.4) holds. Then, there

12It can be easily seen that g converges to a steady state as T →∞ if the left-hand side of (5.3) can
take zero. Let us define τ = T − t, and write ĝ(τ) = g(T − t). Then, ĝτ = −gt, and we can express the
HJB equation as follows:

a(ĝ(τ)) +
1

2γ
µ>e Σ−1µe + r = ĝτ (τ),

with ĝ(0) = 0. If ĝτ (0) < 0, then ĝ decreases as τ increases. Therefore, due to the monotone decreasing

property of a, a(ĝ)+
1

2γ
µ>e Σ−1µe+r increases when τ increases. As a result, when a(ĝ)+

1

2γ
µ>e Σ−1µe+

r = 0, ĝ reaches the steady state. In the same manner, we can prove the case when ĝτ (0) > 0.
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exists a steady value of g as T →∞ such that

lim
T→∞

g(t) =



1

1− ψ

(
log
(
ψδ + (1− ψ)

( 1

2γ
µ>e Σ−1µe + r

))
− ψ log δ

)
,

if
1

2γ
µ>e Σ−1µe + r ≤ δ,

log
( 1

2γ
µ>e Σ−1µe + r

)
,

if δ ≤ 1

2γ
µ>e Σ−1µe + r ≤ δ,

1

1− ψ

(
log
(
ψδ + (1− ψ)

( 1

2γ
µ>e Σ−1µe + r

))
− ψ log δ

)
,

if
1

2γ
µ>e Σ−1µe + r ≥ δ.

The steady optimal consumption/wealth ratio is

lim
T→∞

β∗(t) =


ψδ + (1− ψ)

( 1

2γ
µ>e Σ−1µe + r

)
, if

1

2γ
µ>e Σ−1µe + r ≤ δ,

1

2γ
µ>e Σ−1µe + r, if δ ≤ 1

2γ
µ>e Σ−1µe + r ≤ δ,

ψδ + (1− ψ)
( 1

2γ
µ>e Σ−1µe + r

)
, if

1

2γ
µ>e Σ−1µe + r ≥ δ.

Proposition 5 implies that a change in the subjective discount rate cannot happen in the

I.I.D case until the time variable t becomes sufficiently close to the maturity T . Therefore, the

investor keeps the utility gain or loss in the long term. The reason for this is the homotheticity

of the Epstein–Zin G/L-A SDU. In the I.I.D. case, there are two variables as arguments of the

value function: wealth w and time t. However, because of the homotheticity, the value function

is expressed as (w exp{g(t)})1−γ/(1 − γ). On the other hand, the current utility is expressed

as (wβ)1−γ/(1 − γ), and the consumption/wealth ratio, β, is a control variable. Hence, the

investor can control a current status of utility, e.g., a utility gain or loss, independently of a

value of the wealth variable. Therefore, the wealth variable has no influence on whether the

optimal consumption plan causes a utility gain or loss. In other words, the extra state variable,

Y, which affects the asset price dynamics, causes an effective change in the subjective discount

rate.
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6 Concluding Remarks

This study examines the gain/loss asymmetric SDU (G/L-A SDU) by extending the recursive

preference representation in discrete time of Wakai (2008, 2010). The investor who has the

G/L-A SDU discounts the utility gain, in which the current utility is smaller than the future

utility, by more than the utility loss for which the current utility is larger than the future utility.

By employing the theory of the SDU, the G/L-A SDU can express various preferences including

a version of the Epstein–Zin preference. Furthermore, the G/L-A SDU has different properties

to those of the standard SDU. In particular, when the risk premium of the risky asset is time-

varying and uncertain and, when the EIS is high, this difference is clearer. The sensitivity of

the optimal portfolio weight to changes in the risk premium varies depending on the value of

the risk premium. The optimal consumption/wealth ratio has a dip, which occurs when the

market conditions are bad; that is, the risk premium is close to zero.

There are many possibilities in terms of extending the G/L-A SDU. A particularly interesting

extension is a partial equilibrium asset pricing model. In the rare disaster models, sudden

consumption shocks affect the asset price dynamics in equilibrium. These shocks can be regarded

as shocks in production processes through equilibrium in a good market, so they are exogenous

in the model. However, the G/L-A SDU can generate non-smooth changes, even though the

market return does not have a jump. Therefore, the consumption shocks in the rare disaster

models may be reinterpreted in terms of the dip in the G/L-A SDU. Additionally, the G/L-A

SDU exhibits time-varying sensitivity of the optimal portfolio weight to changes in the stochastic

risk premium. Taking into account feedback in market equilibrium, this may cause non-smooth

changes in the risk premium as in state change models such as the Markov regime-switching

model of Hamilton (1989). Thus, the G/L-A SDU may provide an explanation for these state

change models from the viewpoint of economic theory. This study, therefore, provides a tractable

tool to examine the above phenomena in finance from the perspective of an investor’s gain/loss

asymmetric behavior.
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A Proofs

Proof of Proposition 2. We fix an arbitrary C ∈ C[0, T ]. Note that U is left continuous and

progressively measurable by the left-continuity and progressive measurability of C. We define

by δ∗ a discount rate process as follows:

δ̂t = δ1l{Ut−u(Ct)≥0} + δ1l{Ut−u(Ct)<0},

δ∗t =


lim
s↑t

δ̂s, if t ∈ (0, T ],

δ̂0, if t = 0.

Obviously, δ∗ is in ∆[0, T ; δ, δ]. Now, we consider a new BSDE with respect to (Ût, Ẑt)t∈[0,T ] as

follows:  −dÛt = δ∗t (u(Ct)− Ut)dt− Ẑ>t dBt,

ÛT = u(CT ).

Since the above BSDE meets the standard conditions, there exists a unique solution. It can be

easily seen that

essinf
δ∈[δ,δ]

{δ(u(Ct)− Ut)} = δ∗t (u(Ct)− Ut), dP⊗ dt-a.e.

Therefore, by the comparison theorem, we have Ut = Ût P-a.s. for all t ∈ [0, T ]. Hence,

essinf
δ∈[δ,δ]

{
δ(u(Ct)− Ût)

}
= δ∗t (u(Ct)− Ut) = δ∗t (u(Ct)− Ût), dP⊗ dt-a.e. (A.1)

This implies that Û is also a solution to the following BSDE:

 −dÛt = δ∗t (u(Ct)− Ût)dt− Ẑ>t dBt,

ÛT = u(CT ).
(A.2)

On the other hand, for any δ ∈ ∆[0, T ; δ, δ] and C ∈ C[0, T ], I consider the following BSDE
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with respect to (U δt ,Z
δ
t ):  −dU δt = δt(u(Ct)− U δt )dt− (Zδt )

>dBt,

U δT = u(CT ).
(A.3)

Since the generator of the BSDE (A.3) is linear in U δ and any δ ∈ ∆[0, T ; δ, δ] is uniformly

bounded, from Proposition 2.2 in El Karoui et al. (1997), its solution can be expressed as

U δt = E

[∫ T

t
δse
−

∫ s
t δrdru(Cs)ds+ e−

∫ T
t δrdru(CT )

∣∣∣ FB
t

]
, P-a.s.,

for all t ∈ [0, T ].

Since δ∗ ∈ ∆[0, T ; δ, δ] and using the equality (A.1) and BSDEs (A.2) and (A.3), from

Proposition 3.1 in El Karoui et al. (1997), we obtain

Ut = Ût = essinf
δ∈∆[0,T ;δ,δ]

U δt , P-a.s.,

for all t ∈ [0, T ]. Hence, we conclude that

Ut = essinf
δ∈∆[0,T ;δ,δ]

E

[∫ T

t
δse
−

∫ s
t δrdru(Cs)ds+ e−

∫ T
t δrdru(CT )

∣∣∣ FB
t

]
,

for all t ∈ [0, T ]. 2

Proof of Proposition 4. Since vw ≥ 0 and u is concave, C(δ, v) is an increasing function of δ for

any fixed v. This implies that there does not exist v that satisfies both of u(C(δ, v))−φ−1(v) > 0

and u(C(δ, v))− φ−1(v) < 0.

If u(C(δ, v)) − φ−1(v) > 0, then the investor experiences a utility loss at C(δ, v), so the

discount rate is δ. This implies that the optimal consumption is C∗ = C(δ, v) in the region

in which a consumption C satisfies u(C) − φ−1(v) > 0. In the region in which a consumption

satisfies u(C)− φ−1(v) ≤ 0, the discount rate is δ. Hence, for any C being u(C)− φ−1(v) < 0,
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the first-order derivative of the objective function of the consumption problem is

δφ′(φ−1(v))u′(C)− vw = φ′(φ−1(v))

(
δu′(C)− dφ−1(v)

dw

)
≥ φ′(φ−1(v))

(
δu′(C)− dφ−1(v)

dw

)
≥ φ′(φ−1(v))

(
δu′(C(δ, v))− dφ−1(v)

dw

)
= 0,

in which I used the positivity and decreasing monotonicity of u′. This inequality implies that

the optimal consumption on u(C)−φ−1(v) ≤ 0 satisfies u(C∗) = φ−1(v), i.e., C∗ = u−1(φ−1(v)).

However, since the objective function of the consumption problem is continuous with respect to

C, the value of the objective function at C = C(δ, v) is not smaller than at C = u−1(φ−1(v)).

Therefore, if u(C(δ, v)) − φ−1(v) > 0, then the optimal consumption is C(δ, v). In the same

manner, we can prove that the optimal consumption is C(δ, v) if u(C(δ, v))− φ−1(v) < 0.

We now consider the case when u(C(δ, v)) − φ−1(v) < 0 and u(C(δ, v)) − φ−1(v) > 0.

Since u is increasing and u(C(δ, v)) − φ−1(v) ≥ 0, C(δ, v) is not smaller than any C being

u(C) − φ−1(v) < 0. The first-order derivative of the objective function of the consumption

problem in the region where u(C)− φ−1(v) < 0 is

δφ′(φ−1(v))u′(C)− vw = φ′(φ−1(v))

(
δu′(C)− dφ−1(v)

dw

)
≥ φ′(φ−1(v))

(
δu′(C(δ, v))− dφ−1(v)

dw

)
= 0,

in which I have used the decreasing monotonicity of u′ and C ≤ C(δ, v) in this region. Similarly,

in the region where u(C)− φ−1(v) > 0, the first-order derivative of the objective function is

δφ′(φ−1(v))u′(C)− vw ≤ 0.

Therefore, by the continuity of the objective function, the optimal consumption satisfies u(C∗) =

φ−1(v) in this case. 2
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B Equivalence in Continuous Analogs of Different

Discrete-Time Equations

In this section, I discuss the equivalence in continuous analogs of (2.3) and (2.4). The stochastic

recursive equation (2.4) is shown again:

Ut({cτ}τ≥t) = essinf
δ∈[δt+1,δt+1]

φ
(

(1− δ)u(ct) + δφ−1
(

Et[Ut+1({cτ}τ≥t+1)]
))

.

Here, I suppose that the boundary processes, {δτ}τ≥1 and {δτ}τ≥1, are constant over time,

and omit the consumption sequences. Equation (2.4) can be transformed to the following time-

interval-dependent form:

Ut = φ

(
essinf
δ∈[δ,δ]

{
(1− e−δ∆t)u(ct) + e−δ∆tφ−1

(
Et[Ut+∆t]

)})
,

where I have used the increasing monotonicity of φ. Then, the differential quotient is

Et[Ut+∆t]− Ut
∆t

= −φ′(Rt+∆t) essinf
δ∈[δ,δ]

{
1− e−δ∆t

∆t

(
u(ct)− φ−1

(
Et[Ut+∆t]

))}
,

where Rt+∆t is a random variable taking values between φ−1
(

Et[Ut+∆t]
)

and

essinf
δ∈[δ,δ]

{
(1− e−δ∆t)u(ct) + e−δ∆tφ−1

(
Et[Ut+∆t]

)}
, and I have used the mean value theorem.

I further suppose that lim
∆t↓0

Et[Ut+∆t] = Ut and we can exchange the order of essinf and lim.

Then, we have

lim
∆t↓0

Et[Ut+∆t]− Ut
∆t

= − essinf
δ∈[δ,δ]

{
δφ′(φ−1(Ut))

(
u(ct)− φ−1(Ut)

)}
,

where I have used the fact that φ′ is positive because of the increasing monotonicity of φ.

Therefore, the two equations (2.3) and (2.4) have the same instantaneous growth rate of the

utility. This implies that they also have the same stochastic differential utility representation.
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C Properties of G/L-A SDU

In this section, I explore characteristics of G/L-A SDU as preferences. First, the individual

G/L-A SDUs have different mean-reverting speeds by their gain/loss asymmetries. To observe

this clearly, consider a G/L-A SDU under a constant consumption process. Let Uu,φ,δ,δ(C)

be a G/L-A SDU with (u, φ, δ, δ) under C ∈ C[0, T ] as a consumption process. For any given

constant c ∈ C, let C
c ∈ C[0, T ] be a consumption process with C

c
t = c for all t ∈ [0, T ]. Let us

call C
c

a constant consumption process with c. Here, for any (u, φ, δ, δ), Uu,φ,δ,δ(C
c
) does not

have any random component because the consumption process C
c

is not random. Therefore,

the SDU equation of Uu,φ,δ,δ(C
c
) is represented as

−dU
u,φ,δ,δ
t (C

c
) = F (C

c
t , U

u,φ,δ,δ
t (C

c
);u, φ, δ, δ)dt

= essinf
δ∈[δ,δ]

{δφ′(φ−1(U
u,φ,δ,δ
t (C

c
)))
(
u(c)− φ−1(U

u,φ,δ,δ
t (C

c
))
)
}dt,

and U
u,φ,δ,δ
T (C

c
) = u(C

c
T ) = u(c). This solution is obvious, which is

U
u,φ,δ,δ
t (C

c
) =


φ
(

(1− e−δ(T−t))u(c) + e−δ(T−t)φ−1(u(c))
)
, if φ(u(c)) < u(c),

u(c), if φ(u(c)) = u(c),

φ
(

(1− e−δ(T−t))u(c) + e−δ(T−t)φ−1(u(c))
)
, if φ(u(c)) > u(c),

for all t ∈ [0, T ]. If φ(u(c)) < u(c), then the current utility is greatly discounted, which means

it converges to u(c) quickly. On the other hand, the current utility is less discounted when

φ(u(c)) > u(c), in which case it converges to u(c) slowly.

Second, the gain/loss asymmetry affects the risk attitude. Let us consider G/L-A SDUs

with different degrees of gain/loss asymmetry. Following Duffie and Epstein (1992b), let us

define the comparative risk-averse property as follows.

Definition 6 (Comparative Risk Aversion) A preference represented by a G/L-A SDU

Uu
∗,φ∗,δ∗,δ

∗
is more risk averse than a preference represented by another G/L-A SDU Uu,φ,δ,δ if

for any constant consumption process C
c

and consumption process C ∈ C[0, T ], U
u,φ,δ,δ
t (C

c
) ≥

U
u,φ,δ,δ
t (C) implies U

u∗,φ∗,δ∗,δ
∗

t (C
c
) ≥ Uu

∗,φ∗,δ∗,δ
∗

t (C).

Based on the definition of comparative risk aversion, I implicitly assume that G/L-A SDUs with
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an identical constant consumption process take the same value for them to be comparable.13

In Proposition 7 and Corollary 8, I assume two utilities take the same value under an identical

constant consumption process. The following proposition shows that large gain/loss asymmetry

strengthens the degree of risk aversion in the sense of comparative risk aversion.

Proposition 7 For any given u and φ, Uu,φ,δ
∗,δ

∗
is more risk averse than Uu,φ,δ,δ if [δ, δ] ⊆

[δ∗, δ
∗
] and F (c, v;u, φ, δ, δ) is uniformly Lipschitz with respect to v.

The Lipschitz condition for F is needed when applying the comparison theorem for BSDEs.

The comparison theorem for BSDEs states that an SDU is no less than another SDU, almost

surely, if the generator and bequest utility of the former are also almost surely no less than the

generator and bequest utility of the latter (see Theorem 2.2 in El Karoui et al. (1997)). If the

comparison theorem holds without the Lipschitz condition, it can be omitted.

Proof of Proposition 7. Let C
c

be a constant consumption process with c ∈ C, and let C

be an arbitrary consumption process. Furthermore, suppose U
u,φ,δ,δ
t (C) ≤ U

u,φ,δ,δ
t (C

c
), for

all t ∈ [0, T ]. The condition [δ, δ] ⊆ [δ∗, δ
∗
] implies that the generator of Uu,φ,δ,δ is, almost

surely, no less than that of Uu,φ,δ
∗,δ

∗
. Therefore, the comparison theorem for BSDEs gives

U
u,φ,δ,δ
t (C) ≥ Uu,φ,δ

∗,δ
∗

t (C) for all t ∈ [0, T ]. Thus,

U
u,φ,δ∗,δ

∗

t (C
c
) = U

u,φ,δ,δ
t (C

c
) ≥ Uu,φ,δ,δt (C) ≥ Uu,φ,δ

∗,δ
∗

t (C).

Hence, we obtain the desired result. 2

In general, the Epstein–Zin G/L-A SDU does not satisfy the Lipschitz condition for their

generators. This non-Lipschitz property of the Epstein–Zin type of SDUs is their key feature,

but it is mathematically complex.

The condition for the comparative risk aversion of Duffie and Epstein (1992b) can also

be applied to G/L-A SDUs. The following corollary briefly summarizes the comparative risk

aversion results for changes in φ and u.

Corollary 8

13Duffie and Epstein (1992b) and Chen and Epstein (2002) also refer to this implicit assumption.
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1. Suppose that two generators, F and F̂ , and a continuously twice-differentiable, monotone

increasing, and concave function, h, satisfy

F̂ (c, h(v);u, φ, δ, δ) = h′(v)F (c, v;u, φ, δ, δ),

for all c and v. Then, a G/L-A SDU with generator F̂ is more risk averse than a G/L-A

SDU with generator F .

2. For any given constants γ, γ∗, ψ, δ, and δ, an Epstein–Zin G/L-A SDU with (γ∗, ψ, δ, δ)

is more risk averse than another Epstein–Zin G/L-A SDU with (γ, ψ, δ, δ) if γ∗ ≥ γ.

3. For any given constants γ, γ∗, δ, and δ, a CRRA G/L-A SDU with (γ∗, δ, δ) is more risk

averse than another CRRA G/L-A SDU with (γ, δ, δ) if γ∗ ≥ γ.

Finally, under uncertainty, the gain/loss asymmetry strengthens absolute risk aversion. Sup-

pose u is a linear function and φ is an identity function. Let C be an arbitrary consumption

process, and define EC := (E[Ct])t∈[0,T ]. Then, in the absence of gain/loss asymmetry (i.e.,

δ = δ), we have

Ut(C) = Ut(EC),

for all t ∈ [0, T ]. Thus, the decision maker is risk neutral in this case. However, if δ < δ,

Ut(C) < Ut(EC),

for all t ∈ [0, T ] if Ct 6= ECt in a positive mass of dP ⊗ dt. In this case, the decision maker is

risk averse. Although the instant utility u is linear, a G/L-A SDU exhibits a preference for risk

aversion.

D Verification of the G/L-A SDU

In a general setting, including the Epstein–Zin G/L-A SDU, it is not obvious that a solution to

the HJB equation (4.3) is the value function because the Lipschitz property of a generator does

not necessarily hold. However, Kraft et al. (2013) show that the solution is the value function

under some condition, which they call condition L. Their result can be applied to the HJB
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equation (4.3) as well.

Proposition 9 (Verification Theorem) Suppose the following.

1. There exists a classical solution to the HJB equation (4.3) denoted by v;

2. Condition L: There exists a positive constant k such that

φ′(φ−1(v′))
(
u(c)− φ−1(v′)

)
− φ′(φ−1(v′′))

(
u(c)− φ−1(v′′)

)
≤ k(v′ − v′′),

for any v′, v′′ ∈ R with v′ ≥ v′′ and c ∈ C;

3. For any (t,x) ∈ [0, T )×X and (α,C) ∈ A(t,x), the local martingale

M t,x;α,C
s :=

∫ s

t

(
∂v(r,Xt,x;α,C

r )

∂x

)> W t,x;α,C
r α>r σ(Yt,x

r )dBN
r

σY(Yt,x
r )dBr

 , s ∈ [t, T ],

is a true martingale.

Then, v ≥ V for all (t,x) ∈ [0, T ]×X . Furthermore, in addition to the above conditions, there

exists an admissible feedback control 14 (α∗, C∗) such that

Lα∗(t,x),C∗(t,x)v(t,x) + min
δ∈[δ,δ]

{
δφ′(φ−1(v(t,x)))

(
u(C∗(t,x))− φ−1(v(t,x))

)}
= max

(α,C)

{
Lα,Cv(t,x) + min

δ∈[δ,δ]

{
δφ′(φ−1(v(t,x)))

(
u(C)− φ−1(v(t,x))

)}}
,

for all (t,x) ∈ [0, T )×X . Then, v = V for all (t,x) ∈ [0, T ]×X .

Proof of Proposition 9. If F also satisfies condition L, Theorem 3.1 in Kraft et al. (2013) can

be applied to the G/L-A SDU, in which case the verification is complete. For any v′, v′′ ∈ R
14By Kraft et al. (2013), a function (α,C) : [0, T ]× X → Rn × C is an admissible feedback control if,

for any x = (w,y) ∈ R+ × RM , the following system of SDEs of the state variables,{
dWt =

(
Wt(r(Yt) + α(t,Xt)

>µe(Yt))− C(t,Xt)
)

dt+Wtα(t,Xt)
>σ(Yt)dBN

t , W0 = w
dYt = bY(Yt)dt+ σY(Yt)dBt, Y0 = y

has a unique solution Xx = (Ww,y,Yy) such that (α(t,Xx
t ), C(t,Xx

t ))t∈[0,T ] ∈ A(0,x).
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with v′ ≥ v′′ and c ∈ C, we have

F (c, v′)− F (c, v′′)

= min
δ∈[δ,δ]

{
δφ′(φ−1(v′))

(
u(c)− φ−1(v′)

)}
− min
δ∈[δ,δ]

{
δφ′(φ−1(v′′))

(
u(c)− φ−1(v′′)

)}
≤ max

δ∈[δ,δ]

{
δ
(
φ′(φ−1(v′))

(
u(c)− φ−1(v′)

)
− φ′(φ−1(v′′))

(
u(c)− φ−1(v′′)

))}
≤ k max

δ∈[δ,δ]

{
δ(v′ − v′′)

}
= kδ(v′ − v′′).

Therefore, F also satisfies condition L if a function, (c, v)→ φ′(φ−1(v))
(
u(c)−φ−1(v)

)
satisfies

the condition. 2

Condition L is also a sufficient condition of the existence of gain/loss-asymmetric SDUs (See

Pardoux (1999)). It is easily seen that the standard G/L-A SDU satisfies condition L. Here,

let us consider the Epstein–Zin G/L-A SDU, in which the functional form of φ′(φ−1(v))(u(c)−

φ−1(v)) is

φ′(φ−1(v))
(
u(c)− φ−1(v)

)
=

(1− γ)v

1− 1/ψ

 c1−1/ψ

((1− γ)v)
1−1/ψ
1−γ

− 1

 ,

where γ is the coefficient of relative risk aversion, and ψ is the elasticity of intertemporal

substitution. Then, by Proposition 3.2 in Kraft et al. (2013), condition L holds in the following

four cases:

1. γ > 1 and ψ > 1 (early resolution of uncertainty),
2. γ > 1 and ψ < 1 with γψ ≤ 1 (late resolution of uncertainty),
3. γ < 1 and ψ < 1 (late resolution of uncertainty),
4. γ < 1 and ψ > 1 with γψ ≥ 1 (early resolution of uncertainty).

Many empirical studies show that the coefficient of RRA, γ, is more than one. Therefore, cases

1 and 2 are more interesting economically. As discussed in Kraft et al. (2013), the empirical

values of the EIS given in the literature are mixed. Case 1 coincides with the long-run risk

model of Bansal and Yaron (2004), in which the authors empirically identify the EIS as being

more than one. On the other hand, many traditional studies find that the EIS is less than one,

corresponding to case 2. The EIS is also an important parameter in the Epstein–Zin G/L-A

SDU as I demonstrate in an optimal consumption and investment plan in this paper.
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